112,452 research outputs found

    The composition of the terrestrial planets

    Get PDF
    Composition of terrestrial planets determined by densities of selected minerals, rocks, and silicate

    Hotspots and the evolution of the mantle

    Get PDF
    Trace element patterns show that continental and ocean island basalts are complementary to mid-ocean ridge basalts (MORB). The relative sizes of the two source regions can be estimated from enrichment/depletion patterns. Their combined volume, computed from estimates of whole mantle abundances, occupies the entire upper mantle. The source regions appear to be the result of an early differentiation of the mantle. The MORB source evolved from the melt fraction which lost its late stage enriched fluids to the overlying plume source. The MORB source is primarily garnet and clinopyroxene, consistent with it being an eclogite cumulate

    Core formation, evolution, and convection: A geophysical model

    Get PDF
    A model is proposed for the formation and evolution of the Earth's core which provides an adequate energy source for maintaining the geodynamo. A modified inhomogeneous accretion model is proposed which leads to initial iron and refractory enrichment at the center of the planet. The probable heat source for melting of the core is the decay of Al. The refractory material is emplaced irregularly in the lowermost mantle with uranium and thorium serving as a long lived heat source. Fluid motions in the core are driven by the differential heating from above and the resulting cyclonic motions may be the source of the geodynamo

    Helium Ionization in the Diffuse Ionized Gas surrounding UCHII regions

    Get PDF
    We present measurements of the singly ionized helium to hydrogen ratio (nHe+/nH+n_{He^+}/n_{H^+}) toward diffuse gas surrounding three Ultra-Compact HII (UCHII ) regions: G10.15-0.34, G23.46-0.20 \& G29.96-0.02. We observe radio recombination lines (RRLs) of hydrogen and helium near 5 GHz using the GBT to measure the nHe+/nH+n_{He^+}/n_{H^+} ratio. The measurements are motivated by the low helium ionization observed in the warm ionized medium (WIM) and in the inner Galaxy diffuse ionized regions (DIR). Our data indicate that the helium is not uniformly ionized in the three observed sources. Helium lines are not detected toward a few observed positions in sources G10.15-0.34 \& G23.46-0.20 and the upper limits of the nHe+/nH+n_{He^+}/n_{H^+} ratio obtained are 0.03 and 0.05 respectively. The selected sources harbor stars of type O6 or hotter as indicated by helium line detection toward the bright radio continuum emission from the sources with mean nHe+/nH+n_{He^+}/n_{H^+} value 0.06±\pm0.02. Our data thus show that helium in diffuse gas located a few pc away from the young massive stars embedded in the observed regions is not fully ionized.We investigate the origin of the non-uniform helium ionization and rule out the possibilities : (a) that the helium is doubly ionized in the observed regions and (b) that the low nHe+/nH+n_{He^+}/n_{H^+} values are due to additional hydrogen ionizing radiation produced by accreting low-mass stars (Smith 2014). We find that selective absorption of ionizing photons by dust can result in low helium ionization but needs further investigation to develop a self-consistent model for dust in HII regions.Comment: 43 pages, 11 figures, 5 tables accepted to Ap

    Lateral heterogeneity and azimuthal anistropy of the upper mantle: Love and Rayleigh waves 100-250 sec

    Get PDF
    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage

    The Infrared and Radio Fluxes Densities of Galactic HII Regions

    Get PDF
    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic \hii regions \citep{anderson2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII region infrared flux densities are strongly correlated with their ~20 cm flux densities. All HII regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions (r<1r<1\,pc), have slightly elevated IR to radio ratios. The colors log10(F24micron/F12micron)0\log_{10}(F_{24 micron}/F_{12 micron}) \ge 0 and log10(F70micron/F12micron)1.2\log_{10}(F_{70 micron}/F_{12 micron}) \ge 1.2, and log10(F24micron/F12micron)0\log_{10}(F_{24 micron}/F_{12 micron}) \ge 0 and log10(F160micron/F70micron)0.67\log_{10}(F_{160 micron}/F_{70 micron}) \le 0.67 reliably select HII regions, independent of size. The infrared colors of ~22%\% of HII regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of \citet{wood1989} for HII regions, after adjusting the criteria to the wavelengths used here. Since these color criteria are commonly thought to select only ultra-compact HII regions, this result indicates that the true ultra-compact HII region population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher log10(F70micron/F12micron)\log_{10}(F_{70 micron}/F_{12 micron}) ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing RgalR_{gal}, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.Comment: 27 pages, 16 figures, 5 table

    A heuristic approach to the weakly interacting Bose gas

    Full text link
    Some thermodynamic properties of weakly interacting Bose systems are derived from dimensional and heuristic arguments and thermodynamic relations, without resorting to statistical mechanics

    Transverse modulational instability of partially incoherent soliton stripes

    Full text link
    Based on the Wigner distribution approach, an analysis of the effect of partial incoherence on the transverse instability of soliton structures in nonlinear Kerr media is presented. It is explicitly shown, that for a Lorentzian incoherence spectrum the partial incoherence gives rise to a damping which counteracts, and tends to suppress, the transverse instability growth. However, the general picture is more complicated and it is shown that the effect of the partial incoherence depends crucially on the form of the incoherence spectrum. In fact, for spectra with finite rms-width, the partial incoherence may even increase both the growth rate and the range of unstable, transverse wave numbers.Comment: 5 pages, submitted to Phys. Rev.

    Origin, evolution and present thermal state of the moon

    Get PDF
    The relative absence of lunar volcanism in the last 3 b.y. and the Apollo 15 heat flow measurement suggest that present-day temperatures in the moon are approximately steady state to depths of 100 km. An exponential distribution of heat sources with depth is scaled by equating the surface heat flow to the integrated heat production of this exterior shell. Presumed present-day interior temperatures and the present-day surface heat flow of 30 ergs/cm2-sec are obtained. The estimated homogeneous concentrations of U, the chemistry of the lunar surface material and inferences to modest depth, and the short accretion time of the moon necessary to provide large-scale differentiation at 4.6 AE suggest that the moon had its origin in the rapid accretion of compounds first condensing from the protoplanetary nebula. The present thermal state of the moon may involve at least some partial melting through all the lunar interior deeper than 200 km. Such a thermal configuration is inconsistent neither with temperatures inferred from electrical conductivity studies nor with the nonhydrostatic shape of the moon
    corecore